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I. PURPOSE OF SIMULATION

The purpose of this simulation is to determine the

accuracy performance capability of an aircraft positioning system

based on the triangulation principle when combined with distance

measuring equipment (DME), inertial elements and filtering (blending)

of data from the various sensors.

The simulation also determines how sensitive the

overall system accuracy is to changes in certain key sensor

parameters.

Ii. DESCRIPTION OF SIMULATION

A. GENERAL

The simulation generates position and position rate

accuracy data for an aircraft approach and landing on a small

aviation ship.
Since only the accuracy of the positioning system

is of interest here, aircraft dynamics and closed loop responses

have not been implemented. The simulation does, however,

generate a nominal aircraft trajectory as well as positional

disturbances along that trajectory so as to provide a realistic

exercise for the positioning system.

Each simulation consists of 20 individual approaches

from 3,000 feet range to touchdown. Accuracy statistics are

compiled during three short segments (2.5 seconds long) along

the trajectory. The segments start at 1,000 feet, 300 feet, and

40 feet from touchdown.

Trajectory and ship motion parameters were chosen

as "typical" for a VSTOL approach and landing on a small aviation

ship. I I;
J __-



Nominal sensor parameters were chosen to reflect

the capability of todays technology as well as to minimize as

much as possible the expected size, weight, and cost of the

overall system.

The nominal sensor parameter simulation is used as

a reference point for simulations in which key sensor parameters

are varied, one at a time. The resultant output forms a basis

for analyzing the sensitivity of the systems position and rate

accuracy to changes in these parameters.

The sensitivity analysis evaluates system
performance under varying conditions as well as point out which
sensor parameters must be tightly controlled and which parameters

can be relaxed with minimal effect on the overall system

accuracy.

B. AIRCRAFT TRAJECTORY

Aircraft trajectory starts at 3,000 feet from

ship, 150 ft/sec ground speed, at an altitude of 160 feet. A

fixed average horizontal deceleration of 3.75 ft/sec 2is used
so that ground speed becomes zero at touchdown (X=0). Altitude

is made to decrease linearly with time to yield an exponential-

like decay of height versus X distance as shown in Figure 1.

Figure 1 also shows perturbation in the horizontal
velocity and the vertical trajectory. These perturbations were

programmed by adding random acceleration fluctuations to the

nominal trajectory. This simulates aircraft movements due to air

disturbances and flight control corrections.

The acceleration fluctuations were simulated as
gaussian distributed, zero mean and AlG standard deviation
pseudorandom variable in each of the coordinate axes.
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C. SHIP MOTION SIMULATION

The ships pitch, roll and heave is simulated by

doubly integrating a time correlated pseudorandom process.

This results in smooth slowly changing fluctuations as shown in

Figures 2 and 3.

Constants were chosen to obtain a cyclic period of

approximately 6 seconds. The pitch/roll amplitude is approximately

5 degrees (1 sigma). Vertical acceleration is set at .2 G's'

(1 sigma).

D. SENSORS AND SENSOR ERROR MODELS

The shipboard equipment consists of two azimuth

scanners separated by a distance of 40 feet as depicted in

Figure 4. The azimuth 2 scanner is colocated with an elevation

scanner and a distance measuring beacon (DME).

Azimuth decoding equipment receives guidance
signals from the scanners and measures the two azimuth angles

9 1 and e2, the elevation angle 0 and the DME range RDME.
These four basic measurements are made at an

update rate of 10 per second. At distances within a few
hundred feet of the touchdown point, triangulation utilizing

the e1, e2, and 0 measurement is primarily used for precision

position. At longer distances, geometric dilution renders

the triangulation measurement of the X coordinate useless, so the

DME measurement together with e1 and 0 provides primary
guidance.

In addition to the guidance signals,ship motion at

the origin of the coordinate frame is sensed and made available

to the airborne system. The pitch, roll and vertical acceleration

is sensed and transmitted to the aircraft for pocessing.
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The airborne system also has access to data

derived from accelerometers mounted on a stable platform.

The inertial data is used to essentially smooth out the angle

and DME data in order to provide precision rates required

for VSTOL autoland flight controls.

AZIMUTH AND ELEVATION SENSOR ERROR MODEL

The azimuth and elevation sensors are modeled

as a pseudorandom gauss markoff process. A fixed .1 degree

bias (held constant in all simulations) is utilized. Standard

deviation is fixed at .07 degrees and the correlation time

constant of the process is nominally .5 sec.

Correlation time constant of the pseudorandom

process determines the spectum of the resultant noise. A time

constant of .5 seconds is roughly equivalent to a cyclic noise

fluctuation with a periodicity of 2 seconds. Figure 5 shows

the angle noise characteristics as a function of time.

The azimuth and elevation sensor occurances
can be realized with a scanning antenna beamwidth at approximately

3 decrees. Since the slow cyclic error fluctuations are multipath

related, the period of the fluctuations is dependent on the

systems operating frequency. The nominal .5 second correlation

time constant is empirically chosen for a system operating

at Ku-Band.

DME ERROR MODEL

Two distance measuring elements are considered.

The first is a DME operated at Ku-Band. Its error is modeled

as a nominal 30 foot bias and a 10 foot 1 sigma noise component.

Correlation time constant is nominally set at .5 sec.

-8-



The second DME is a precision L-band unit

(similar to TACAN). Its error is modeled as a nominal 80

foot bias, 70 foot 1 sigma noise component, and because of the

lower operationg frequency, the time constant is nominally

set at 5 seconds.

AIRBORNE INERTIAL SENSORS

The inertial sensors are assumed to be high

quality instruments normally used for inertial navigation.

Acceleration data is derived from three orthogonal accelerometers

mounted on a stable platform. Nominal accelerometer bias is set

at 60 micro G's. A scale factor error (error linearly increasing

with increasing acceleration) of 34 parts per million is assumed.

The accelerometer mounting axes are assumed milligned from true

orthogonal by .01 degrees.

Biases and drifts of the stable platform are

not modeled except for the difference in error between the

shipboard and the airborne heading reference. A nominal

heading error of 1 degree is assumed.

SHIP MOTION SENSORS

The ship motion sensors measure the ships pitch,

ships roll and the ships vertical acceleration.

The pitch and roll sensor is assumed to have

a nominal .05 degree bias error and a .05 degree 1 sigma random

noise error.

Nominal error model for the vertical accelerometer

is taken to be identical with the airborne accelerometer

model. Nominal parameters being:

bias = 60 micro G's

scale factor = 34 PPM

misalignment = .01 degree

-9-
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A tabulation of nominal parameters for trajectory, ship motion

and sensor error model appears in Table I.

E. AIRBORNE SYSTEM MECHANIZATION

Mechanization of the airborne system is shown

in block diagram form in Figure 6. The main purpose of the

mechanization is to combine angle measurement data, distance

measurement data and inertial data to obtain near optimum

estimates of aircraft positions and rates relative to ship.

RANGE BLENDING

As shown in riguire 6, Angle measurement data

el, e 2 and 0 is triangulated to compute range. The accuracy

of this measurement is highly dependent on range from ship

because of the limited 40 foot baseline, upon which triangulation

is based. The DME measurement accuracy, however, is nearly

constant as a function of range.

In order to optimally combine triangulation

range and DME range, the expected 1 sigma triangulation

accuracy is computed as function of DME range. A sample output

of the triangulation range accuracy (1 sigma) as well as raw

triangulation range error is given in Figure 7.

A blending coefficient for combining

triangulation and DME range is computed next. The coefficient

(shown in Figure 8 for DME #1) is based on relative

variances of the 2 data sources. At 1,000 feet range for

example, the blending coefficient has the value of .86. 86

percent of the DME data sample is, therefore, combined with

14% of the triangulation range sample to produce the optimum

range. At distances within 300 feet, most of the range data

is taken from triangulation with very little coming from

the DME.



TABLE I. NOMINAL PARAMETERS

AIRBORNE TRAJECTORY PARAMETERS

X AXIS ACCELERATION .IG
FLUCTUATION (I SIGMA)

Y AXIS ACCE'FRATION
FLUCTUATION (I SIGMA) .1G

Z AXIS FLUCTUATION (1 SIGMA) .1

AIRBORNE SENSORS

SENSOR PARAMETER NOMINAL VALUE

AZIMUTH 1) BIAS .1 DEG

AZIMUTH 2 NOISE .07 DEG

ELEVATION,, CORRELATION TIME CONST .5 SEC

BIAS 30 FT

DME #1 NOISE 10 FT

CORRELATION TIME CONST .5 SEC

BIAS 80 FT

DME #2 NOISE 70 FT

CORRELATION TIME CONST 5 SEC

BIAS 60 uG

ACCELEROMETER SCALE FACTOR 34 PPM

MISALIGNMENT .011 DEG

HEADING SHIP/AIR HEADING 1 DEG
SENSOR MISALIGNMENT



ADDITIONAL PARAMETERS FOR SIMULATION WITH SHIP MOTION

SHIP MOTION PARAMETERS

PITCH FLUCTUATION 5 DEG
(I SIGMA)

ROLL FLUCTUATION 5 DEG
(1 SIGMA)

VERTICAL ACCELERATION .2 G
(1 SIGMA)

SHIP SENSORS

SENSOR PARAMETER NOMINAL VALUE

PITCH SENSOR BIAS .05 DEG
NOISE .05 DEG

ROLL SENSOR BIAS .05 DEG
NOISE .05 DEG

VERTICAL ACCELEROMETER BIAS 60 uG
NOISE 30 uG

-13-
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COORDINATE TRANSFORMATION

Once an optimum range, R, is computed, a

coordinate transformation utilizing the I and 0 angle

measurements is performed to obtain Xs, Ys, Zs position

referenced to the ship (see Figure 6). The Xs , Ys, and Zs

measurements are referenced to the ships landing platform

and, therefore, pitch, roll and heave with the movements of

the platform. The pitch and roll fluctuations are taken out

by a coordainte rotation utilizing data from the ships pitch

and roll sensors. Aircraft postion XST, YST' ZST is,

therefore, relative to the touchdown point, but stabilized

with reference to the horizon.

The 1 sigma accuracy in the XST parameter

is given in Figure 8 as a function of range. At ranges

around 1,000 feet, the XST accuracy is very nearly determined

by the accuray of the DME. The expected accuracy improves

with decreasing range until it very nearly becomes triangulation

accuracy at ranges close to ship. The expected 1 sigma XST

accuracy is computed for input to a Kalman filter which

combines the XST data with inertial data.

INERTIAL DATA PROCESSING

Inertial data is taken from the three orthogonal
accelerometers. The accelerometer axes are assumed not to

coincide with the XST, YST' ZST coordinate system so the

ships and aircraft heading references are used to resolve the

aircraft accelerations into the XST, YST' ZST coordinates.

Each of the resolved accelerations (XIs, Yis, Zis) goes

through a double intergration to obtain inertial rate

(X1IS YIS' ZIS) and inertial position (X1 s, Z1 S) respectively.

-16-
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The ships vertical acceleration (sensed on the

ship and data linked to aircraft) is subtracted from the

aircraft vertical acceleration to obtain relative acceleration

between ship and plane prior to going through the integration

process. This is done because of the relatively large heave

components expected. The same is not done for the X and Y

accelerations, i.e., the landing platform surge and sway

fluctuations are ignored.

Note that Figure 6 shows the integrators and

Kalman filter only for the X component. A similar mechanization

is assumed for the Y and Z components. The following discussion

centers on the X component, but is equally valid for the Y and

Z components as well.

The distance integrator is initialized at the

start of the trajectory using the first computed XT

measurement. The rate integration is initialized using the
difference between two X measurements spaced I second apart.

ST

KALM4AN FILTER

Output error of the integrators is shown in

Figure 9. The X rate error (X is) is seen to have a bias

essentially equal to the initialization error with a barely

noticeable drift as a function of time (or distance). The

noise component is seen to be quite small. Noise component

of the X error (X is) is also seen to be small, but a much

more noticeable drift as function of time occurs.

The purpose of the Kalman filter, therefore,
is to estimate tlia jias error in the inertial position and rate

(X is and X is) using the computed X ST measurement. The biases

are then subtracted from the inertial measurements to obtain

low noise and low bias position and velocity estimates.
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The filter's input consists of the difference

between inertial position X is and the X STmeasurement, i.e.,

the raw inertial error. Also input to the filter is the

expected 1 sigma X ST accuracy (which is also the accuracy of

the input raw inertial error).

The filter generates two outputs; inertial

position bias estimate and inertial velocity bias estimate.

Several additional parameters are also internally computed.

These parameters are: (1) prediction of the position bias and

velocity bias for the next computational cycle and (2) the

expected accuracy of that prediction.

The predicted estimates are combined with

the input data in a manner similar to the way triangulation

range was combined with DME range. A weighing coefficient

is computed based on the relative expected accuracies of the

predicted versus input data. The weighing coefficient

combines a portion of the input data with a portion of the

predicted estimate to arrive at an optimum estimate of the

output variables.

Figure 10 shows the filter weighing

coefficients from 3,000 feet range to touchdown. The position

weighing coefficient is seen to have a value of nearly 1

at the start of the trajectory. This implies that the output

is formed mostly from the input data with very small

percentage from the predicted estimate. As time goes on, the

predicted estimate becomes more and more accurate so that

only a small portion of the input data is used to form the output

estimate. Within 300 feet from touchdown, the input data

becomes more and more accurate because of the increasing

accuracy of the triangulation measurement. This is reflected

in the weighing coefficient by increasing the percentage of

input data used to form the output in relation to the predicted

estimate.
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The output position bias estimate and velocityI bias estimate is subtracted from the respective inertial
position and inertial velocity in order to obtain the smoothed

position and smoothed velocity estimates.

It should be noted that there is no averaging

done on the inertial data and, therefore, practically no lag

associated with the smoothed outputs due to a sudden aircraft

acceleration. The only expected lag is due to the samplingi

interval of the integrators, which was arbitrarily set at

.1 seconds.

Filter settling characteristics when

initialized from a cold start are shown in Figure 11. Smoothed

X position is useable as soon as the integrators are

initialized (it takes 1 second to initialize the integrators).

Smoothed X velocity gets within 4 ft/sec of final value in

less than 4 seconds from start.

F. SIMULATION OUTPUTS

Position and rate accuracies for a simulation

run utilizing nominal parameter values (see Table I) and

DME #1 are given in Fiugres 12 through 14. The X parameter

(Figure 12) is seen to be relatively noise free. The bias

error is essentially the bias of the triangulation/DME

measurement and tends to zero as touchdown is neared.

X rate error contains a bias error between 1

and 2 ft/sec primarily due to the changing bias in the X

parameter. Noise is low, less than 1/2 ft/sec.

Accuracies in the Y and Z parameters are

primarily determined by the biases in the angle measurements.

Accuracies are better than 1 foot within 600 feet of touchdown.

Rate accuracies have noise components of 1/3 ft/sec. RateI

bias is typically less than 1/3 ft. sec.

-22-
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Accuracies for the X and X rate parameters for

a simulation run utilizing nominal parameter values and DME #2

is shown in Figure 15.

Here, the combination of large DME bias

(80 feet) coupled with a large time correlated DME noise

component (70 feet with a time constant of 5 seconds) generated

rate biases in excess of 16 ft/sec. As demonstrated by this

example, although this system mechanization is capable of

smoothing large noise components in the DME and triangulation

data, it does have a hard time smoothing out slowly varying

fluctuations such as encountered when using DME #2.

G. COMPILATION OF STATISTICS

Twenty individual runs (similar to Figures

12 through 15) are performed in order to generate the accuracy

statistics. The statistics are compiled during 3 segments

of the trajectory each segment being 2.5 seconds long, starting

at 1,000 feet, 300 feet and 40 feet distance, respectively.

Figure 16 shows the X accuracy during these segments for

several individual runs.

RSS error (bias plus noise) is computed for

each of the trajectory segments using data from the 20 runs.

The computed RSS error constitutes a single point in the

sensitivity analysis plots. Another point is generated by

changing one of the sensor parameters and repeating the 20

simulation runs. Figure 18 shows a sample plot of X error

sensitivity to changes in heading error.
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III. SIMULATION RESULTS

Simulation results are presented in two parts. The

first part, Figures 17 through 72, contains position and rate

error sensitivities to changes in airborne sensor parameters.

Platform motion is not included in these simulations.

Parameters analyzed are as follows:

(1) Difference in error between ships

and airborne heading references

(2) DME bias error

(3) Airborne accelerometer bias

(4) DME error correlation time constant

(5) Angle error correlation time constant

The second part of the results, Figures 73 through

106, deals with position and rate error sensitivities to

changes in ship motion sensor parameters. Platform motion is

included in these simulations.

Parameters analyzed include:

(1) Pitch sensor bias

(2) Roll sensor bias

(3) Ships vertical accelerometer bias

-30-



A. SENSITIVITIES TO AIRBORNE SENSOR PARAMETERS

HEADING ERROR (FIGURES 17 - 25)

Sensitivity of X error to the error difference

between the ships and airborne heading references (Figure 18)

shows a modest increase when heading error is varied from 1

degree to 10 degrees. Largest percentage increase in X error

occurs near touchdown. At 40 feet range, X error increases

from .55 feet to 1.21 feet.

X rate error (Figure 19) similarly changes with

heading error. At 40 feet, range X rate error increases from

.74 ft/sec to 1.4 ft/sec when heading error changes from 1

degree to 10 degrees.

Y error and Y rate error (Figures 21 and 22)

also show an increase with increasing heading error, but

accuracies near touchdown are better than 1 foot and 1 ft/sec

even for heading errors of 10 degrees.

X errors and X rate errors utilizing DME #2

is given in Figures 24 and 25. At ranges beyond 300 feet,

very little difference in error are seen mainly because other

error sources swamp out the contribution due to heading. X

-31-



error at 1,000 feet range is typically 90 feet. X rate error

is typically 9 ft/sec. At 40 feet range and 10 degree heading

error, X error becomes .63 feet and X rate error is 1 ft/sec.

The apparently better performance at close range of DME #2 system

versus DME #1 is due to transitioning to triangulation

guidance much earlier in range.

Sensitivity of the Z and Z rate parameters

versus heading error were not performed since heading inaccuracy

does not impact measurement of aircraft vertical

accelerations.

DME BIAS ERROR (FIGURES 26 - 37)

Sensitivities of position and rate accuracy

to changes in DME bias wre performed by fixing the triangulation/

DME blending parameters such that the blending coefficient was

optimized for a DME with a 30 foot bias. The actual bias,

however, was varied from 10 to 120 feet.

Results of the X error sensitivity are given in

Figure 27. As expected, X error varies linearly with DME bias

at longer ranges, having the least effect near touchdown. It

is interesting to note that at 300 feet range, X error for a

30 foot DME bias is lower than the X error for a 10 foot DME

bias. This is probably because the triangulation/DME blending

is "tuned" for a 30 foot DME bias.

J
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Increasing the DME bias had the most effect

on the X rate accuracy around 300 feet range (Figure 28).

The slope in the X error bias which occurs during transition

from DME to triangulation appears to effect the X rate accuracy

most.

Y error and Y rate error were minimally

effected (Figures 30 and 31). Z error increased at longer

range with little effect near touchdown. Z rate accuracy was

likewise minimally effected.

X and X rate accuracies for a DME #2 system

(Figures 36 and 37) did not show appreciable increases due to

increasing DME bias. The large time correlated noise component

of DME #2 appears to be swamping out this source of error.

An increase in X rate error around 300 feet range is noticeable.
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ACCELEROMETER BIAS (FIGURES 38 - 49)

Accelerometer bias did not seem to have much

impact on position and rate accuracies for accelerometer bias

levels up to 1,000 microG's. At 10,000 microG'S (.01G), all

position and rate accuracies developed a fixed offset which

was fairly constant from run to run.

X error bias at 40 feet range for example

changed from -.31 feet to 1.69 feet when the accelerometer bias

increased from 1,000 to 10,000 microG's. X rate accuracy

bias at 40 feet likewise increased from -.47 ft/sec to 1.52

ft/sec.

The Y and Z position and rate errors suffered

a similar shift in bias of approximately 2 feet and 2 ft/sec

respectively.

X and X rate accuracies utilizing DME #2

do not seem to show much change with changing accelerometer

bias probably because of the masking effect of other larger

sources of error.

DME CORRELATION TIME CONSTANT (FIGURES 50 - 61)

Increasing the DME error correlation time

constant from .5 seconds to 10 seconds had the greatest

impact on X accuracy around 300 feet range (Figure 51). X

error at 300 feet increased from 2 feet to 18 feet. Most of

the error increase was in the form of a bias which changed
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from run to run. X error increase at 1,000 feet range can

also be seen, but is not quite as pronounced as at 300 feet.

X rate error increased somewhat at 1,000 feet

range (from 1 ft/sec to 1.6 ft/sec). Very little effect is

seen at 300 feet and 40 feet.

Y and Z position and rates (Figures 53 - 57)

did not show much sensitivity to this error parameter.

X error utilizing DME #2 also showed a

pronounced increase as the correlation time constant was

changed from 5 seconds to 20 seconds (Figure 60) especially

at 300 feet range. X rate error was also increased, although

not quite as pronounced.

ANGLE CORRELATION TIME CONSTANT (FIGURES 62 - 72)

Changing the angle correlation time constant

from .5 seconds to 5 seconds had minimal effect on all

position and rate errors. Maximum effect was observed at long

ranges, 1,000 feet, for the Y error and Z error.

Y error at 1,000 feet increased from .95 feet

to 1.54 feet. Z error increased from 3.25 feet to 3.69 feet.
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B. SENSITIVITY TO SHIP MOTION SENSOR PARAMETERS

PITCH SENSOR BIAS

Pitch sensor bias was varied from a nominal

value of .05 degrees up to a maximum of .15 degrees. The only

noticeable effect on position and rate accuracies was an

increase in the Z error at 1,000 feet from 3.78 feet to 5.5

feet. (Figure 80). Most of the increase was due to a shift

in Z bias.

In addition to the normal Z output which is

relative to the touchdown point, an absolute Z estimate

(referenced to the next position of the touchdown point) was

computed. This, in effect, is an indirect way of measuring

heave.

The absolute Z estimate is performed by

not subtracting the ships vertical acceleration from the

airborne vertical acceleration. Figure 82 shows a typical run

utilizing nominal parameters. Figures 83 and 84 show the

absolute Z and Z rate sensitivity to pitch sensor bias.

Absolute Z accuracy near touchdown was measured to be 2.86

feet at .05 degree pitch sensor bias, increasing to 3.87

feet at .15 degree pitch sensor bias. The absolute Z

accuracy appeared to be highly dependent on the 'exact structure

of heave fluctuation.
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Absolute Z rate did not appear sensitive to

pitch bias, staying at approximately 1/2 ft/sec.

ROLL SENSOR BIAS (FIGURES 85 - 95)

Changing roll sensor bias from .05 to .15

degrees had no significant effect on any of the position

and rate accuracies.

Absolute Z error appeared to decrease

with increasing roll bias, but this is most probably attributed

to an inadequate number of runs to completely characterize

the heave fluctuation.

VERTICAL ACCELEROMETER BIAS (FIGURES 102 - 106)

As expected, increasing the bias of the

ships vertical accelerometer effected only the Z and Z rate

error.

The Z and Z rate errors did not change

appreciably until the accelerometer bias increased to 10,000

microG's. At that point, both Z and Z rate developed a fixed

offset of approximately -3 feet and -3 ft/sec respectively.

Also, the Z error developed a fluctuation due to the inadequate

filtering of the heave component (see Figure 102).
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C. SUMMARY AND CONSLUSIONS

System mechanization utilizing nominal parameters

and DME #1 had no problems meeting 1 foot position and 1 ft/sec

rate accuracies near touchdown.

Rate accuracies at longer ranges were within 1

ft/sec; more than adequate for autoland flight control.

The assumed angle sensor accuracies of .1 degree

bias, .07 degree noise were adequate. Changes in noise correlation

time constant did not appear to make much difference in position

and rate accuracies. Operating frequency for the angle sensors

should, therefore, be dictated mostly by the physical size of

the scanning antennas.

X rate accuracy utilizing DME #2 was marginal

at longer ranges. One sigma amplitude of the time correlated

noise component should, therefore, be limited to 10 or 15 feet.

Operating frequency should be as high as possible in order to

minimize the noise correlation time constant. DME bias error

should be held within 60 feet in order to limit the X rate bias

shift during the transition from DME to triangulation guidance.

Airborne accelerometer biases should be within

1,000 microG's so as not to introduce position and rate biases.

Difference in error between shipboard and

airborne heading reference had minimal effect on system accuracy.

A 5 degree error limit will yield satisfactory results.
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Shipboard vertical accelerometer bias should be

held to within 1,000 microG's so as to minimize height and

height rate biases. Shipboard pitch and roll sensors did not

have much effect on output accuracy. A .15 degree bias

allowance for pitch and roll will yield satisfactory system

performance.
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IV. SIMULATION DATA - SENSITIVITIES TO AIRBORNE

SENSOR ERROR PARAMETERS
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A. SENSITIVITY TO DIFFERENCE IN HEADING ERROR
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B. SENSITIVITY TO DME BIAS ERROR
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C. SENSITIVITY TO ACCELEROMETER BIAS ERROR
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D. SENSITIVITY TO DME ERROR CORRELATION TIME

CONSTANT
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FIGURE 72
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V. SIMULATION DATA - SENSITIVITIES TO SHIP

MOTION SENSOR ERROR PARAMETERS
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A. SENSITIVITY TO PITCH SENSOR BIAS ERROR
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X ERROR SENSITIVITY
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FIGURE 74
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FIGURE 75
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*~ VERROR
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FIGURE 76
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Y ERROR SENSITIVITY
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FIGURE 77

-108-
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FIGURE 78
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Z ERROR SENSITIVITY
TO SHIP PITCH SENSOR BIRS

S 100 FT RRNGE

x
H x x

1.-2IL

I

0.03 0.015 0.01 0.12 0.I5 0.15
Lo
-B

_6 300 FT RRNGE

m
0 4
m

N

21 x
0.03 0.01 0.09 '0.12 '.15. I 0.18

SHIP PITCH SENSOR BIRS ERROR-DESB

HO FT RRNQE

L4
2

"0.03i 0.015 'wos 'o.I Is0 E
FIGURE 80'Im
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a Z RRTE ERROR SENSITIVITY
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FIGURE 84
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B. SENSITIVITY TO ROLL SENSOR BIAS ERROR
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FIGURE 86
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e X RATE ERROR SENSITIVITY
TO SHIP ROLL SENSOR BIRS
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FIGURE 90
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FIGURE 91
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FIGURE 92
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TO SHIP ROLL SENSOR BIAS

a 1000 FT RRNGE

V

wH

L9.

I x

-a

-6 300 FT RRFNE

m

1312

x Ix x
i0213 '0. .05 0.1210.15 0.15

NSHIP ROLL SENSOR BIRS ERROR-DESNa

E '0 FT RFINBE

H

2

I i I xx i
0. 03 'o.0 0s'2.0m 0. i2 'o 0. i

FIGURE 95
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C. SENSITIVITY TO SHIP VERTICAL ACCELEROMETER

BIAS ERROR
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FIGURE 96
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FIGURE 97
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FIGURE 99
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FIGURE 100
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FIGURE 101
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FIGURE 102
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FIGURE 103
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FIGURE 104
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